Dream with Beamer

Jimmy Kelliher

2022-04-13

Using Boxes to Highlight Theorems or Definitions

Theorem

There are infinitely many primes.

Proof. Toward contradiction, suppose there are finitely primes given by the collection $\left\{p_{1}, \ldots, p_{n}\right\}$. Define

$$
p \equiv 1+\prod_{i=1}^{n} p_{i}
$$

By construction, for all $i \in\{1, \ldots, n\}, p \equiv 1\left(\bmod p_{i}\right)$, and hence p_{i} does not divide p. By the uniqueness of the prime factorization of p, then, the only divisors of p are 1 and itself, so p must also be a prime. However, because $p>p_{i}$ for all $i \in\{1, \ldots, n\}$, $p \notin\left\{p_{1}, \ldots, p_{n}\right\}$. Thus, we have constructed a new prime not in our collection of all primes, giving the desired contradiction. \qquad

Using Boxes to Highlight Theorems or Definitions

Definition 1.1.

Let G be any set and let $*: G \times G \rightarrow G$ be a binary operation on G. A group is an ordered pair $(G, *)$ such that
(1) $\forall a, b, c \in G,(a * b) * c=a *(b * c)$;
(2) $\exists e \in G$ such that $\forall a \in G, e * a=a * e=a$; and
(3) $\forall a \in G, \exists b \in G$ such that $a * b=b * a=e$.

That is, the binary operation must be associative, an identity element must exist, and inverses must exist for all elements of the group.

Example 1.2. The set of real numbers \mathbb{R} is a group under addition.
Example 1.3. The set of real numbers \mathbb{R} is not a group under multiplication, as zero has no inverse. However, $\mathbb{R} \backslash\{0\}$ is indeed a group under multiplication.

Using TikZ to Create Diagrams

Using TikZ to Create Diagrams

Dream with Beamer

Using Tidyverse to Create Graphs

If $X \sim \operatorname{Beta}(\alpha, \beta)$, then X has a density given by

$$
f(x \mid \alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Let's plot this density explicitly for $(\alpha, \beta)=(2,5)$.

Using KableExtra to Create Tables

Suppose we have the data-generating process

$$
Z=\beta_{0}+\beta_{1} X+\beta_{2} Y+\varepsilon
$$

for $X, Y \sim N(0,1)$ and $\varepsilon \sim N\left(0, \sigma^{2}\right)$, all mutually uncorrelated.
Let's assume $\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=(1,5,-2)$, draw an iid sample of size $n=1,000$, and fit a linear model.

Table of Inferential Statistics

term	estimate	std.error	statistic	p.value
(Intercept)	1.05	0.10	10.72	0
X	5.15	0.09	54.45	0
Y	-1.93	0.09	-20.56	0

Click here for more on KableExtra!

